Course Code: 19EC0422

# SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)



(Approved by AICTE, New Delhi& Affiliated to JNTUA, Ananthapuramu)
(Accredited by NBA for Civil, EEE, Mech., ECE & CSE)
(Accredited by NAAC with 'A' Grade)
Puttur -517583, Chittoor District, A.P. (India)

#### **QUESTION BANK (DESCRIPTIVE)**

| SUBJECT     | MICROWAVE THOERY AND  | COURSE &           | B.TECH-ECE |
|-------------|-----------------------|--------------------|------------|
| WITH CODE:  | TECHNIQUES (19EC0422) | BRANCH:            |            |
| YEAR & SEM: | III YR & II SEM       | <b>REGULATION:</b> | R19        |

# UNIT –I INTRODUCTION OF MICROWAVE

| 1.  | a) | What do you remember about the history in the evolution of Microwaves?                        | [L1][CO1]  | [5 M]   |
|-----|----|-----------------------------------------------------------------------------------------------|------------|---------|
|     | b) | List out                                                                                      | [L1][CO2]  | [7 M]   |
|     |    | i) The applications of Microwaves.                                                            |            |         |
|     |    | ii) Microwave frequency bands based on the IEEE standards.                                    |            |         |
| 2.  | a) | Discuss in detail about the concept of mode                                                   | [L2][CO2]  | [6 M]   |
|     | b) | Describe the concept of dominant mode and degenerate mode with suitable                       | [L2][CO2]  | [6 M]   |
| 3.  | ۵) | examples.                                                                                     | [T 2][CO1] | [7 N/]  |
| 3.  | a) | Define the following terms i) Guide wavelength ii) Cut off frequency iii) Cut off wavelength. | [L2][CO1]  | [/ [VI] |
|     | b) | The dimensions of a guide are 2.5 x 1 cms. The frequency is 8.6 GHz. Find                     | [L1][CO5]  | [5 M]   |
|     |    | the cutoff frequencies for $TE_{10}$ and $TE_{01}$ mode.                                      |            |         |
| 4.  | a) | Compute the expression for phase velocity.                                                    | [L3][CO4]  |         |
|     | b) | A rectangular waveguide has a=4 cms, b=3cms as its sectional dimensions.                      | [L5][CO5]  | [6 M]   |
|     |    | Predict all the modes which will propagate at 5000 MHz.                                       |            |         |
| 5.  | a) | Express the equation for wave impedance in TE and TM waves.                                   | [L1][CO1]  | [7 M]   |
|     | b) | Derive the expression for group velocity.                                                     | [L2][CO1]  | [5 M]   |
| 6.  | a) | Identify the method to estimate the power transmission for $TE_{mn}$ and $TM_{mn}$            | [L2][CO3]  | [6 M]   |
|     |    | modes.                                                                                        |            |         |
|     | b) | Derive the expression for cut off frequency in a waveguide.                                   | [L3][CO4]  | [6 M]   |
| 7.  | a) | How to estimate the Power Losses in Rectangular Guide?                                        | [L1][CO4]  | [8 M]   |
|     | b) | Interpret power handling capability of Rectangular waveguide.                                 | [L3][CO2]  | [4 M]   |
| 8.  | a) | List out the features of TEM, TE and TM Modes.                                                | [L2][CO1]  | [6 M]   |
|     | b) | Explain the attenuation due to metal conductivity & dielectric loss tangent                   | [L1][CO2]  | [6 M]   |
|     |    | in losses associated with microwave transmission.                                             |            |         |
| 9.  | a) | Explain about various losses that occur in microwave transmission.                            | [L2][CO4]  | [7 M]   |
|     | b) | A circular waveguide operating in the dominant mode at a frequency of                         | [L4][CO5]  | [5 M]   |
|     |    | 9GHz with maximum field strength of 300V/cm. The internal diameter is                         |            |         |
|     |    | 5cm. Calculate the maximum power transfer.                                                    |            |         |
| 10. | a) | Summarize the Concept of impedance in microwave transmission.                                 | [L2][CO1]  | [6 M]   |
|     | b) | What are the methods used to overcome losses in impedance matching?                           | [L1][CO4]  | [6 M]   |
|     |    | ·                                                                                             |            |         |

## UNIT-II MICROWAVE PARAMETERS

| 1. | a)  | Discuss about Impedance & Admittance matrix representation of 2 port, N-                 | [L2][CO1]  | [7 M]  |
|----|-----|------------------------------------------------------------------------------------------|------------|--------|
|    |     | Port microwave network under analysis of RF and microwave transmission                   |            |        |
|    |     | line.                                                                                    |            |        |
|    | b)  | Derive the S-matrix for series connection of two port network.                           | [L3][CO4]  | [5 M]  |
| 2. | a)  | Explain with neat sketch the working of coaxial line transmission line.                  | [L1][CO1]  | [6 M]  |
|    | b)  | A coaxial line has the following physical dimensions. Diameter of inner                  | [L4][CO5]  | [6 M]  |
|    |     | conductor =0.49cm,Inner diameter of outer conductor=1.10cm,                              |            |        |
|    |     | Polyethylene dielectric € <sub>r</sub> =2.3.Calculate i) Inductance per unit lengths ii) |            |        |
|    |     | Capacitance per unit length iii) characteristic impedance iv) the velocity of            |            |        |
|    |     | propagation.                                                                             |            |        |
| 3. | a)  | Derive the equation for the propagation of TE waves in rectangular                       | [L3][CO4]  | [6 M]  |
|    |     | waveguide.                                                                               |            |        |
|    | b)  | An air filled rectangular waveguide of inside dimensions operates in the                 | [L3][CO5]  | [6 M]  |
|    |     | dominant $TE_{10}$ mode as shown in following figure. Compute the cutoff                 |            |        |
|    |     | frequency and determine the guided wavelength at $F = 3.5$ GHz.                          |            |        |
|    |     |                                                                                          |            |        |
|    |     | V4 / -2 /                                                                                |            |        |
|    |     |                                                                                          |            |        |
|    |     |                                                                                          |            |        |
|    |     |                                                                                          |            |        |
|    |     |                                                                                          |            |        |
|    |     | 3.5 cm                                                                                   |            |        |
|    |     | 01. 2                                                                                    |            |        |
| 4  | 2)  | / cm                                                                                     | II 21[CO4] | rc M1  |
| 4. | a)  | Derive the equation for the propagation of TM waves in circular waveguide.               | [L3][CO4]  | [6 M]  |
|    | b)  | A TE <sub>11</sub> Mode is propagating through a circular waveguide. The radius of       | [I 2][CO5] | [ 6 M] |
|    | U)  | the guide is 5 cm, and the guide contains an air dielectric. Compute the                 | [L3][CO5]  |        |
|    |     | cutoff frequency.                                                                        |            |        |
|    |     | euton nequency.                                                                          |            |        |
|    |     | <b>^</b>                                                                                 |            |        |
|    |     |                                                                                          |            |        |
|    |     |                                                                                          |            |        |
|    |     |                                                                                          |            |        |
|    |     |                                                                                          |            |        |
|    |     |                                                                                          |            |        |
|    |     | 0                                                                                        |            |        |
|    |     | y                                                                                        |            |        |
|    |     |                                                                                          |            |        |
|    |     | ₹ <sub>x</sub>                                                                           |            |        |
| 5  | a)  | Describe the cavity resonator with neat sketch and List it types &                       | [L1][CO1]  | [6 M]  |
|    |     | applications.                                                                            |            |        |
|    | b)  | Derive expression for f <sub>o</sub> in rectangular cavity resonator.                    | [L3][CO4]  | [6 M]  |
| 6  | a)  | Demonstrate the working principle of strip line.                                         | [L2][CO2]  | [6 M]  |
|    | b)  | Explain the working of Microsrtip line. Draw its field distribution diagram.             | [L1][CO2]  | [6 M]  |
| 7  | a)  | What is Non-TEM line? Express its equation for V-I.                                      | [L1][CO3]  |        |
|    | b)  | Discover the Faraday's rotation and Recall the microwave devices which                   | [L1][CO4]  |        |
|    |     | are used for Faraday rotation.                                                           |            |        |
| 8  | a)  | Explain the working principle of Gyrator with neat sketch.                               | [L2][CO3]  | [6 M]  |
|    | b)  | Deduce the S-matrix for Gyrator.                                                         | [L4][CO5]  | [6 M]  |
| 9  | a)  | Explain the working of principle Circulator with a neat sketch.                          | [L2][CO3]  |        |
|    | . / | <u> </u>                                                                                 |            |        |
|    |     |                                                                                          |            |        |

|     | b) | Deduce the S-matrix for Circulator.    | [L4][CO5] | [6 M] |
|-----|----|----------------------------------------|-----------|-------|
| 10. | a) | What is Isolator? Derive its S-matrix. | [L1][CO2] | [7 M] |
|     | b) | List the applications of Circulator.   | [L1][CO1] | [5 M] |

# UNIT-III WAVEGUIDE COMPONENTS AND APPLICATIONS

| 1.  | a) | Interpret the mechanism of coupling in a waveguide.                                                                                                                                                              | [L3][CO1] | [6 M]  |
|-----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
|     | b) | Extend the following waveguide components                                                                                                                                                                        | [L2][CO2] | [6 M]  |
|     |    | (i) Waveguide posts (ii) Tuning Screws                                                                                                                                                                           |           |        |
| 2.  |    | escribe the following attenuators                                                                                                                                                                                | [L2][CO2] | [12 M] |
|     | a) | Resistive Card attenuator b)Rotary Vane Attenuator                                                                                                                                                               |           |        |
| 3.  | a) |                                                                                                                                                                                                                  | [L1][CO3] | [6 M]  |
|     |    | rotary vane phase shifter with neat sketch.                                                                                                                                                                      |           |        |
|     | b) | List out the properties of S-matrix.                                                                                                                                                                             | [L1][CO3] |        |
| 4.  | a) | 1 6                                                                                                                                                                                                              |           | [5 M]  |
|     | b) | 1                                                                                                                                                                                                                |           | [7 M]  |
| 5   | a) | Identify the microwave tee, whose rectangular slot is cut along the broader                                                                                                                                      | [L3][CO6] | [6 M]  |
|     |    | dimension, Describe in detail.                                                                                                                                                                                   |           |        |
|     | b) | Derive the S-matrix for E-Plane Tee.                                                                                                                                                                             | [L2][CO4] |        |
| 6   | a) | Identify the microwave tee, whose rectangular slot is cut along the wider                                                                                                                                        | [L3][CO5] | [6 M]  |
|     |    | dimension, Describe in detail.                                                                                                                                                                                   |           |        |
|     | b) | Derive the S-matrix for H-Plane Tee.                                                                                                                                                                             | [L1][CO4] |        |
| 7   | a) | Identify the microwave tee, whose rectangular slot is cut both along the                                                                                                                                         | [L3][CO1] | [6 M]  |
|     |    | width and breadth of long waveguide dimension, Describe in detail.                                                                                                                                               |           |        |
|     | b) | Discuss about the applications of the magic Tee.                                                                                                                                                                 | [L2][CO3] |        |
| 8   | a) | Demonstrate the working of Directional Coupler with suitable diagram &                                                                                                                                           | [L2][CO1] | [6 M]  |
|     |    | Express its Coupling factor and directivity.                                                                                                                                                                     |           |        |
|     | b) | A directional coupler has the scattering matrix given below. Evaluate the                                                                                                                                        | [L4][CO1] | [6 M]  |
|     |    | directivity, coupling, isolation.                                                                                                                                                                                |           |        |
|     |    |                                                                                                                                                                                                                  |           |        |
|     |    | $\begin{bmatrix} 0.05 \angle 30 & 0.96 \angle 0 & 0.1 \angle 90 & 0.05 \angle 90 \\ 0.06 & 0.05 & 0.05 & 0.05 & 0.05 \end{bmatrix}$                                                                              |           |        |
|     |    | $[S] = \begin{bmatrix} 0.03230 & 0.05230 & 0.1230 & 0.03230 \\ 0.96 \angle 0 & 0.05 \angle 30 & 0.05 \angle 90 & 0.1 \angle 90 \\ 0.1 \angle 90 & 0.05 \angle 90 & 0.04 \angle 30 & 0.96 \angle 0 \end{bmatrix}$ |           |        |
|     |    | $\begin{bmatrix} 0.1 \angle 90 & 0.05 \angle 90 & 0.04 \angle 30 & 0.96 \angle 0 \\ 0.05 \angle 90 & 0.1 \angle 90 & 0.96 \angle 0 & 0.05 \angle 30 \end{bmatrix}$                                               |           |        |
|     |    | $\begin{bmatrix} 0.05 \angle 90 & 0.1 \angle 90 & 0.96 \angle 0 & 0.05 \angle 30 \end{bmatrix}$                                                                                                                  |           |        |
| 9   | a) | Derive S-matrix for Directional Coupler.                                                                                                                                                                         | [L2][CO4] | [6 M]  |
|     | b) | In a phase shift measurement setup, without the waveguide component the                                                                                                                                          | [L4][CO4] |        |
|     |    | guide wavelengths measured 7.2cm and the reference null was at 10.5cm.                                                                                                                                           | [][]      | r1     |
|     |    | With the component the reference null got shifted to 9.3cm. Inspect the                                                                                                                                          |           |        |
|     |    | phase shift of the component.                                                                                                                                                                                    |           |        |
| 10. | a) | What are the types of directional coupler? Explain in detail.                                                                                                                                                    | [L1][CO1] | [6 M]  |
|     | b) | Derive the S-matrix for Hybrid ring.                                                                                                                                                                             | [L2][CO4] | [6 M]  |
|     |    | •                                                                                                                                                                                                                |           |        |

### UNIT-IV MICROWAVE TUBES

| 1.  | a)                                                                        | Mention the limitations of conventional tubes usage at Microwave                   | [L2][CO3] | [7 M]  |
|-----|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|--------|
|     |                                                                           | frequencies. Explain inter-electrode capacitance and lead inductance effect.       |           |        |
|     | b)                                                                        | Distinguish between O type Microwave tubes and M type Microwave                    | [L4][CO3] | [5 M]  |
|     |                                                                           | tubes.                                                                             |           |        |
| 2.  | a)                                                                        | Explain the constructional details and principle of operation of two cavity        | [L2][CO6] | [8 M]  |
|     |                                                                           | klystron with the neat sketch.                                                     |           |        |
|     | b)                                                                        | Illustrate the phenomenon of bunching with the help of Applegate diagram           | [L3][CO5] | [4 M]  |
|     |                                                                           | of two cavity Klystron tube.                                                       |           |        |
| 3.  | Exp                                                                       | plain the velocity modulation process in two cavity Klystron tube and derive       | [L2][CO4] | [12 M] |
|     | the                                                                       | equation for velocity modulation.                                                  |           |        |
| 4.  | a)                                                                        | What is meant by bunching process and transit time?                                | [L1][CO5] | [5 M]  |
|     | b)                                                                        | A two cavity klystron amplifier has the following characteristics:                 | [L2][CO6] | [7 M]  |
|     |                                                                           | Voltage gain = 15 dB, Input Power = 5 mW, $R_{sh}$ of input cavity = 30 k          |           |        |
|     |                                                                           | ohm, $R_{sh}$ of output cavity =40 k ohm, load impedance = 40 Kohm. Find           |           |        |
|     |                                                                           | input rms voltage and the output rms voltage.                                      |           |        |
| 5   |                                                                           | cuss in detail about the working of Reflex Klystron with mechanism and             | [L2][CO4] | [12 M] |
|     | mo                                                                        | des of oscillation.                                                                |           |        |
| 6   | a)                                                                        | Derive the expression for output power for Reflex Klystron.                        | [L3][CO6] |        |
|     | b)                                                                        | Derive the expression of condition for maximum efficiency for Reflex               | [L3][CO6] | [6 M]  |
|     |                                                                           | Klystron.                                                                          |           |        |
| 7   | a)                                                                        | Discuss about magnetron and its types.                                             | [L2][CO4] | [5 M]  |
|     | b)                                                                        | A normal circular magnetron has the following parameters inner Radius              | [L5][CO4] | [7 M]  |
|     |                                                                           | $R_a$ =0.15 m, Outer Radius $R_0$ =0.45 m, Magnetic flux density $\beta_0$ = 1.2 m |           |        |
|     |                                                                           | Wb/m2.Determine the Hull cut-off Voltage and the cyclotron frequency in            |           |        |
|     |                                                                           | GHz.                                                                               |           |        |
| 8   |                                                                           | plain in detail about 8- Cavity magnetron with suitable diagram.                   | [L2][CO6] | [12 M] |
| 9   | Der                                                                       | rive the mathematical analysis of cylindrical magnetron with necessity             | [L3][CO6] | [12 M] |
|     | diagrams.                                                                 |                                                                                    |           |        |
| 10. | a)                                                                        | Derive the expression for Hull-Cutoff Voltage and Hartree Conditions.              | [L3][CO6] | [7 M]  |
|     | b)                                                                        | A reflex klystron operates at the peak mode of $n = 2$ with $V_0 = 280$ V, $I_0 =$ | [L5][CO6] | [5 M]  |
|     | 22 mA and signal voltage $V_1 = 30$ V. Determine input & output power and |                                                                                    |           |        |
|     |                                                                           | efficiency.                                                                        |           |        |

### UNIT-V MICROWAVE MEASUREMENTS

| 1.  | a)    | Distinguish between low frequency measurements and microwave measurements.        | [L4][CO4] | [5 M]  |
|-----|-------|-----------------------------------------------------------------------------------|-----------|--------|
|     | b)    | List the possible errors in VSWR measurement.                                     | [L1][CO5] | [7 M]  |
| 2.  | a)    | Discuss in detail about the microwave power measurement using                     | [L2][CO4] |        |
|     |       | Bolometric technique.                                                             |           |        |
|     | b)    | Discuss calorimeter technique, explain in detail about the microwave              | [L2][CO6] | [6 M]  |
|     |       | power measurement.                                                                |           |        |
| 3.  | a)    | With the help of a neat sketch, briefly explain the functions of different        | [L2][CO4] | [6 M]  |
|     |       | blocks of a microwave bench.                                                      |           |        |
|     | b)    | Two identical directional couplers are used in a waveguide to sample the          | [L5][CO6] | [6 M]  |
|     |       | incident and reflected powers. The output of the two couplers is found to be      |           |        |
|     |       | 2.5mw and 0.15mW. Determine the value of VSWR in the waveguide.                   |           |        |
| 4.  | Exp   | plain about measurement of attenuation using a microwave bench setup.             | [L2][CO4] | [12 M] |
| 5.  | Exp   | plain briefly on the following microwave frequency measurement methods:           | [L2][CO4] | [6 M]  |
|     | (i) S | Slotted line method. (ii) Down conversion method.                                 |           |        |
| 6.  | a)    | What is VSWR? Explain how Low values of VSWR(S<20) can be                         | [L1][CO4] | [6 M]  |
|     |       | measured directly from the VSWR meter using the experimental set-up.              |           |        |
|     | b)    | Explain how high values of VSWR(S>20) can be measured directly from               | [L2][CO4] | [6 M]  |
|     |       | the VSWR meter using the experimental set-up.                                     |           |        |
| 7.  | a)    | With the help of wave meter method explain the microwave frequency                | [L1][CO5] | [6 M]  |
|     |       | measurement.                                                                      |           |        |
|     | b)    | What are the precautions to be taken while setting up microwave bench for         | [L6][CO5] | [6 M]  |
|     |       | measurement of various parameters? Explain.                                       |           |        |
| 8.  | a)    | Describe the measurement of impedance using slotted line method.                  | [L4][CO4] | [6 M]  |
|     | b)    | Assume you have two directional couplers (20 dB) in a guide to sample the         | [L3][CO4] | [6 M]  |
|     |       | incident and reflected powers. The outputs of the two couplers are 3mw            |           |        |
|     |       | and 0.1mw respectively. What is the value of VSWR in the main                     |           |        |
|     |       | waveguide? What is the value of reflected power?                                  |           |        |
| 9.  | a)    | Sketch the experimental setup necessary for the measurement of impedance          | [L3][CO4] | [6 M]  |
|     |       | using slotted line. Explain it in detail.                                         |           |        |
|     | b)    | Using the reflectometer method, explain how to measure the impedance              | [L2][CO4] | [6 M]  |
|     |       | with the help a block diagram.                                                    |           |        |
| 10. | a)    | Explain the measurement of Quality factor (Q) using Reflectometer                 | [L2][CO4] | [6 M]  |
|     |       | method.                                                                           |           |        |
|     | b)    | Estimate the SWR of a transmission system operating at 10GHz.                     | [L6][CO4] | [6 M]  |
|     |       | Assume TE <sub>10</sub> wave transmission inside a waveguide of dimensions a=4cm, |           |        |
|     |       | b=2.5cm. The distance measured between twice minimum power points = 1             |           |        |
|     |       | mm on a slotted line.                                                             |           |        |
|     |       |                                                                                   |           |        |

Prepared by, Mr B.Ravibabu, Assoc Prof/ECE Mr.G.Raghul, Asst Prof/ECE Ms.P.Saranya, Asst Prof/ECE